GSWorld: Closed-Loop Photo-Realistic Simulation Suite

for Robotic

Haoran Chang*!:?
Zhao Dong?

Guanggqi Jiang*!

Ri-Zhao Qiu'
Xueyan Zou'

Manipulation

Jiyue Zhu'

Yutong Liang! Mazeyu Ji'

Xiaolong Wang!

1UC San Diego, 2UC Los Angeles, 3Meta

*Equal Contributions

Metric-scale Scene and Object Renderings

https://3dgsworld.github.io

4 |

GSWorld Construction
Real to Simulation
Reconstruction

>

GSWorld Applications
Simulation to Real
Alignment

(a) DAgger Corrective Data:
Pick up the yellow bottle.

N
LD

&

(b) RL (Rendered):

Put the cans on the deck.

(c) Imitation (Rendered):
Pick up the spoon & put it on cut board.

Fig. 1: GSWorld leverages 3DGS reconstruction to render photo-realistic robot scenes, supports multiple policy learning
recipes in the simulation, and realizes zero-shot sim2real transfer. GSWorld also applies to policy visual benchmarking and

virtual teleoperation for data collection.

Abstract—This paper presents GSWorld, a robust, photo-
realistic simulator for robotics manipulation that combines
3D Gaussian Splatting with physics engines. Our framework
advocates ‘closing the loop’ of developing manipulation policies
with reproducible evaluation of policies learned from real-robot
data and sim2real policy training without using real robots. To
enable photo-realistic rendering of diverse scenes, we propose
a new asset format, which we term GSDF (Gaussian Scene
Description File), that infuses Gaussian-on-Mesh representation
with robot URDF and other objects. With a streamlined
reconstruction pipeline, we curate a database of GSDF that
contains 3 robot embodiments for single-arm and bimanual
manipulation, as well as more than 40 objects. Combining
GSDF with physics engines, we demonstrate several immediate
interesting applications: (1) learning zero-shot sim2real pixel-to-
action manipulation policy with photo-realistic rendering, (2)
automated high-quality DAgger data collection for adapting
policies to deployment environments, (3) reproducible bench-
marking of real-robot manipulation policies in simulation, (4)
simulation data collection by virtual teleoperation, and (5) zero-
shot sim2real visual reinforcement learning.

I. INTRODUCTION

Training manipulation policies typically relies on three
data sources—simulation, human videos, and real teleopera-
tion—each presenting a distinct trade-off. While simulation
provides a perfectly aligned action space for the robot, it
often suffers from many sim-to-real gaps. Human videos
offer the benefit of photo-realistic scenes and real physics,
but lack temporally aligned robot actions and operate in a
mismatched action space. Teleoperation successfully aligns
both perception and actions, yet its high cost and difficulty
to scale are significant limitations.

To resolve these trade-offs, we introduce GSWorld, a
closed-loop, photo-realistic simulation suite that couples 3D
Gaussian Splatting (3DGS) with physics to narrow both
the visual and action-space gaps for manipulation. “Closed-
loop” here means the same environment can be used to
train, evaluate, diagnose failures, and relabel, enabling rapid
iteration: policies perceive photo-realistic renderings while
issuing controls in the robot’s native space, all inside a

https://3dgsworld.github.io

simulator that mirrors real scenes closely enough to support
zero-shot transfer and efficient adaptation. We demonstrate
that GSWorld enables a range of downstream applications
and, in particular, effective sim-to-real transfer for imitation
learning, reinforcement learning, and DAgger-style data col-
lection.

This closed-loop capability is powered by a bidirectional
pipeline that ensures tight alignment between the physical
world and its digital twin. In the real-to-sim direction, our
pipeline reconstructs a metric-accurate digital twin from
short multi-view captures, sets an absolute scale with ArUco
markers, and aligns the robot URDF to the scene via surface
fitting (e.g., ICP). We then attach collision meshes and ma-
terial properties to produce a versatile GSDF asset. The sim-
to-real direction is the reverse: policies trained in GSWorld
deploy on hardware without interface translation because
their control and observation spaces match the robot’s native
APIs. Policies trained with both sim and real data can
be deployed in the sim to evaluate, detect failures, and
gather DAgger corrections, thus closing the iteration loop.
Achieving this sim-to-real alignment requires that the scene’s
geometry, camera properties, and action semantics remain
consistent across the real-to-sim divide. We measure the
degree of this correspondence through a suite of metrics
evaluating the visual, geometric, and functional similarity
between the two worlds.

With photo-realistic perception and native action-space
control in one loop, GSWorld supports zero-shot sim-to-
real for both visual imitation learning and visual RL, while
exploiting scalable parallelism to accelerate data genera-
tion and training. Its closed-loop DAgger workflow lets
practitioners reproduce on-robot failures inside the digital
twin, step through them frame-by-frame, and collect targeted
corrective labels with far less teleoperation overhead. Finally,
GSWorld provides reproducible visual benchmarking: shared
GSDF assets, fixed camera intrinsics/extrinsics, consistent
lighting/materials, and standardized action semantics en-
able apples-to-apples comparisons across robots, scenes, and
tasks—so improvements reflect algorithmic progress rather
than environmental variance.

Existing GS-based simulators either target single-setup
photo-realistic rendering, provide engine-tied pipelines with-
out a portable asset standard, or limit the reproducible
cross-embodiment benchmarking and deployment-oriented
on-policy data collection [5, 27, 38, 45]. While GSWorld
delivers an effective real-to-sim-to-real workflow that unifies
photo-realistic 3DGS with contact-accurate physics, enabling
scalable cross-embodiment benchmarking, zero-shot imita-
tion and reinforcement learning, and automated high-quality
DAgger data collection for continual deployment-time im-
provement.

In summary, our contributions are:

« A solid real-to-sim-to-real pipeline. Our robust real-to-sim-
to-real pipeline accurately aligns the simulation with the
real environment, enabling a wide range of subsequent
applications.

o Simulation Data Collection and Visual Imitation Learn-

ing (IL). GSWorld supports multiple sim data collection
methods, e.g. motion planning, teleoperation. IL policies
trained with GSWorld data can be directly deployed to the
reconstructed real-world scenes.

o Visual RL. GSWorld is designed to utilize parallel environ-
ments in the simulation to train RL policies. We provide
an analysis to show that GSWorld reduces RL sim2real
visual gaps.

o Closed-loop DAgger Learning with Visual Benchmarking.
GSWorld shows reliable policy evaluation results in corre-
lation with real-world deployments, contributing to using
DAgger to iteratively improve real-world policies.

II. RELATED WORK

Robotics Simulation. With developments in computer
graphics for rendering [54] and object material simula-
tion [50], the robotics community has designed various
physics engines [10, 13] and simulators [47, 56, 60] to
support various robotics tasks. Recently, more and more
simulators have started to improve efficiency and fidelity.
For example, Mujoco-Jax [60] exploits just-in-time com-
pilers [18] to achieve impressive simulation efficiency in
Python. To improve rendering fidelity and reduce sim2real
visual gaps, recent papers have turned to sophisticated ray-
tracing techniques [54] and generative Al tools [39] to reduce
the visual observation gap between simulation renderings and
the real world. A recent ‘meta-simulator’, Roboverse [15],
attempts to provides a unified simulation interface to make
use of the advantages in individual simulators. This paper
focuses on improving the fidelity of simulation renderings
by combining recent advances in 3D Gaussian Splatting and
simulators.

Real2Sim (Real-to-Simulation). As an alternative to
modeling basic physics and elements from the bottom-up
in simulation, real2sim approaches take a different approach
to build simulation assets by virtualizing real-world assets.
Recent real2sim methods can be roughly divided into two
categories: photo-realistic 3D reconstruction [1, 6, 17, 27,
34, 35, 44, 45, 53] and part-level (articulated) object under-
standing [7, 11, 36, 52].

Real2Sim (Real-to-Simulation) - Photo-realistic Ren-
dering. Early method in Real2Sim reconstruction [44] use
NeRFs [37], Diffusion [28] or Mesh [52] for photo-realistic
modeling. Due to the inherent implicit representation of
NeRFs, they often rely on surrogates such as deformation
fields [21] to deform the visual renderings to accommodate
object motion, which is unnatural and inefficient. On the
other hand, mesh-based representations contain many arti-
facts [52] that lead to visual gap. Simpler [28] proposes
to use generative modeling to advance reproducible bench-
marking [22, 24] by supporting photorealistic rendering.
However, Simpler requires expensive manual labor to match
green screen and textures, hindering its scalability. With
developments in 3DGS [26], a rasterization-based method,
SplatSim [45] successfully combined 3DGS with PyBul-
let [10] to build a photo-realistic simulator and demonstrated
zero-shot sim2real policy deployment. As 3DGS can be

Data Collection

ment

- - -

Y
—

Obj. Scans

Obj. Datasets

-

GSWorld

.. Photo-Realistic

Physics Simulation

Backend

Applications
Sim. (v \‘ul Sim. Privileged

policy B Info

Closed-loop
DAgger Training

|
i

Real [Reset &

policy . Re-plan

Rendering
¥
17 T

e

L Ly

Zero-shot sim2real Visual Benchmarking

)
=

obs., reward
GSWorld

action

RL Agent

/ Virtual Teleoperation Reinforcement Learning

Fig. 2: GSWorld provides an interface on top of existing simulators to render photorealistic assets. Our GSDF assets are
compatible with existing simulators to use standard formats for rendering visuals (e.g., depth, segmentation) and computing
physics collisions. GSWorld provides a rendering wrapper on top of simulators to make the RGB rendering photo-realistic

to support various domain randomization and applications.

explicitly represented as ‘Gaussian Blobs’, the photo-realistic
appearance can be displaced consistently with object physics.
However, SplatSim relies on manual 3D segmentation of
both the robot arm and objects, which is overfitted to a single
scene. In parallel to the development of SplatSim, Embodied-
GS [1] learns arm-object interaction without using physics
engine in a single scene; Robo-GS [34] focuses on identify-
ing physical parameters of individual objects from rendering;
and ManiGaussian [35] investigates optimizing Gaussian
representations from simulators with ideally synchronized
multi-view information. Most recently, Re3Sim [17] extends
SplatSim [45] and found that the capability to perform
photo-realistic simulation leads to more robust manipulation
policies with domain randomization and mixed simulation
(e.g., non-photorealistic simulation assets with photo-realistic
scenes). We continue to advance the progress in photo-
realistic simulation by combining the latest advancements
in 3DGS and introducing more 3DGS assets with a unified
asset format.

Real2Sim (Real-to-Simulation) - Others. Here we pro-
vide a concise review of other progress in real2sim that
is orthogonal to our method. Part-level (articulated) object
understanding methods [7, 11, 36, 52] apply internet-scale
pre-trained visual and language models [32, 46] to create
physics and articulation of simulation assets from real-world
observations. While these methods focus on understanding
articulation of objects, recent methods have also worked on
more challenging tasks such as estimating physics for de-
formable objects [25] and rigid contracts [42]. PhysTwin [25]
optimizes physics models for elastic objects by assuming a
Spring-Mass model and estimating physics parameters from
video observations. Scalable Real2Sim [42] is an advance-
ment from previous physics estimation method [34], in which
the authors built a pipeline that uses robot arm and camera
setups to automate estimation of rigid physics parameters
including mass, center of mass, and inertia tensor [42].
Liu et al. [31] proposes to optimize robot kinematics from
differentiable rendering.

III. METHOD

A. Problem Formulation

We consider the problem of learning robot policies from
visual observations. Let Sy, denote simulated scene and
Greal denote the real scene Sy reconstructed by 3DGS from
multiple RGB viewpoints V = Ywv;. Geq can be used to
render novel-view RGB images 1% = G,.qi(p, s), which
enables photorealistic rendering of the scene under arbitrary
camera poses p and environment states s.

Our goal is to replace raw real-world RGB observations
I3 with 3DGS-rendered images I¢° for downstream robot
learning tasks, including IL, RL, and DAgger. Formally,
at each time step ¢, the underlying state of the system is
represented as

1
5t:(qtaxt7"'7x?)a (1
where ¢; € R™ denotes the robot’s joint position, and
represents the 6D pose of the k-th object in Syea;. We mainly
use joint position control for the robots. The robot receives
an observation

0y = Itgg = greal(pta St)a (2)

rendered from G, given the current camera pose p; and
environment state s;.

In RL, the policy mg is trained by interacting with the
environment and receiving rewards. In IL, the expert £ pro-
vides demonstrations 7¢ = {(q1,01,a1),...,(qr,or,ar)},
which are used to supervise my. In DAgger, my is iteratively
refined by collecting expert rollouts from previous failure
cases, getting 7p. In all cases, the policy takes as input I}
instead of 1™, and robot proprioceptions ¢, i.e.,

ar ~ (I, qr). 3)

At test time, the trained policy 7y must generalize to
real-world observations 1™, ensuring that GSWorld bridges
sim2real visual gap.

B. Recipe for Real2Sim Reconstruction

This section describes how GSWorld creates GSDF assets
to construct photo-realistic scenes. Compared with existing
work [17, 27, 34, 45, 59] that focus on constructing robots in
a single scene, GSWorld is designed (1) with an easy-to-use
streamlined procedure to reduce manual alignment efforts
and (2) to incorporate recent advancements in 3DGS such
as geometric accuracy [19].

a) Collecting Training Views: To construct a scene
with a robot, we use both robot sensors (i.e., wrist cameras
and third-person cameras) and mobile phone cameras while
saving the current joint pose of robot during the scene
capture.

b) Aligning Scale for Metric Representation: EXisting
real2sim2real methods [43, 45] relies on COLMAP [49],
which introduces scale ambiguity. While such ambiguity can
be dealt with manually for a single scene, it affects the
scalability for multiple robot embodiments and scenes. To
avoid manual scale alignment, we use a simple solution to
include a printed ArUco marker [14, 23] on the tabletop
during the data collection (qualitative examples in Fig. 1).
The detected keypoints of ArUcO markers are projected
onto the point cloud formed by 3DGS. We then scale the
point cloud using the known scales of the ArUcO marker. In
addition, the ArUco marker helps identify the support surface
in collision and estimate gravity direction.

c) Aligning Robots and Table: Given a metric-scale
Grear Of a static robot R and a metric-scale robot URDF
in Ssim, we align the simulation joint position with the real
world. Then, we sample and densify surface point clouds
from the visual mesh of the robot URDF. We then perform

an ICP to compute the rigid transform 7%, : Grear =
T3 sim - Ssim- Compared to previous methods [45], our ICP

has fewer degrees of freedom since the scale is fixed. Given
the alignment, we use K-NN to segment robot links in G,cq;.

d) Object Assets: Our prior reconstruction stage fo-
cuses on background and robot scans. For moveable objects
O, we consider integrating existing large-scale datasets and
supporting custom objects for generalizability. Specifically,
we use DTC [12] for its photo-realistic visual quality, and
YCB [4]. For custom objects, we use 2DGS [19] to get
the reconstruction O9° and mesh reconstruction. Mass is
estimated by weighing. The unobserved bottom regions of
the object can be optionally inpainted using amodal re-
construction [2, 55] or 3D object generation [30] method.
Similarly, we use ICP to get the transform 7,77, =~ for the
k-th object: O7° = T7%. . Oy.

k,sim

C. Applications - Closing the Loop for Developing Visual
Manipulation Policies

a) Closed-loop DAgger Training: In the traditional
imitation learning settings, policy weights are not updated
once they are trained and deployed. During deployment,
policies often run into failures. DAgger [48] is a solution
to this case where corrective data is used to train the model
to adapt to failure cases. DAgger data has been shown to
have much better data efficiency than plain data by previous

works [29, 61]. However, collecting DAgger data is hard as
it requires reproducing scene setups for the model to ‘re-
experience’ the failure case.

GSWorld provides an interface for automatic DAgger data
collection in simulation. Given the GSDF of the target
deployment environment and tasks with scripted policies, we
roll out the policies with GSWorld. For failure recordings
Dy = (s1,...,s7), we randomly sample recovery states
s, ~ Dy with a uniform sampler, where the task is still
achievable in s,, and run the motion planner to obtain
corrective data, as illustrated in Fig. 3.

Fig. 3: DAgger Data Collection in Simulation. With privileged
information provided by simulation, we can record and relive the
failure cases during rollouts and generate corrective data for policy
adaptation.

To iteratively improve zero-shot sim2real policies, we
collect data, evaluate policies, record failures, and recover,
resulting in an aggregated dataset 7s:

s :Ei(gsvosaAs)i (4)

, where Q,, A, denote simulation robot joint positions,
and action labels. O, = 1I9° is the GSWorld-rendered

observations and ¢ is the DAgger iteration.
To improve policies trained with real-world data, we first
evaluate the polices and repeat the same loop, leading to

dataset 7 :
™R = (QT‘7OT7AT)UTS (5)

, where Q,,O,, A, are collected in the real world by
teleoperation.

b) Visual Benchmarking.: Recent VLAs [3, 33, 40]
train generalist policies that work on many different robot
embodiments. Learning from extensive cross-embodiment
training data, these base models adapt to unseen robot
hardware and language instructions in a few-shot or even
zero-shot manner [3, 33]. However, due to their reliance
on real robot data during training, there does not exist a
standardized visual manipulation benchmark that studies the
quality of the base models and their data sampling efficiency
for novel embodiments.

GSWorld provides a photo-realistic rendering interface to
address such an issue. With our GSDF assets, we provide
photo-realistic simulation of various scenes with different
robot embodiments, and a wide selection of interactable

objects. We define a range of manipulation tasks using

ManiSkill [51] as the simulator backend. Moreover, we use

image augmentation to further reduce the visual gap between

sim and real.

¢) Reinforcement Learning.: RL requires massive in-
teraction between agents and the environments, usually with
parallelism [51]. To better support RL, GSWorld optimizes
its implementation by only parallelizing 3DGS points that
are linked with moving parts of the scene, i.e., robot R and
objects O, and keeps other points cached with just one copy.

This enables us to use a single GPU to run large parallelism

to accelerate RL convergence.

IV. EXPERIMENTS
This section presents an empirical evaluation of GSWorld
to demonstrate its effectiveness. Our experiments are de-
signed to address the following research questions:

o Zero-shot Sim2real Imitation Learning. Can GSWorld
effectively bridge the sim-to-real gap to enable zero-shot
policy transfer?

o Closed-loop Policy Improvement. Does access to a digital
twin of the target deployment environment increase sam-
pling efficiency and enable continual improvement after
policy deployment via DAgger?

o Visual Benchmarking. Does performance in GSWorld
correlate with real-world performance?

« Virtual Teleoperation. Does GSWorld enable simulated
data collection through human teleoperation?

o Reinforcement Learning (RL). Can GSWorld narrow
down the sim2real visual gap for visual RL?

o
RealSense D435

FR3

xArme_ [

Fig. 4: Real World Hardware Platforms. For FR3, we set up
two cameras: a third-person camera positioned in front of the robot
(front view), and a wrist-mounted camera attached to the robot’s
end effector (wrist view). For XArm6, we set up a third-person
camera besides the robot (side view) and a wrist view.

a) Hardware Platforms: Though GSWorld scales to
many robot embodiments, we consider three robot platforms
for evaluation: a Franka Research 3 (FR3) robot with a UMI
gripper [9]; a UF xArm6 with a parallel gripper; and a
bimanual Galaxea R1 robot equipped with two 6-DoF arms.

b) Experiment Protocol: In total, we evaluate GSWorld
on 4 manipulation tasks on FR3 and 3 tasks on xArm.
We also use R1 to demonstrate that GSWorld supports
virtual simulation teleoperation to collect data. For policy
implementations, we use ACT [62] and Pi0 [3] to show
GSWorld to be policy-agnostic. For visual benchmarking,
we intentionally train policies with varying training settings

robotic tasks that involve distinct manipulation skills and
diverse objects on FR3.

Fig. 6: xArm Task Visualizations. We design 3 manipula-
tion tasks on xArm6.

and data sizes to evaluate the performance of ‘good’ and
‘bad’ policies. Please kindly refer to our released codebase
for full implementation details due to limited space.
¢) Manipulation Tasks Design: We designed the fol-
lowing table-top manipulation tasks to evaluate perfor-
mances, as shown in Fig. 5 and Fig. 6:
o Place Box. The bottle and the box are initialized randomly
within a 45 cm x 45 cm area. FR3 must pick up the bottle

and place it onto the box.
o Pour Sauce. The mustard bottle and the bread slice are put

within a 45cm X 45cm area. FR3 is required to pour the

sauce onto the bread slice.
o Stack Cans. Two cans are randomly placed within a

45cm x 45 cm area. FR3 must stack them.

o Arrange Cans. Two cans are randomly placed within a
20cm x 15cm area. A rack is randomly placed beside
them. FR3 is tasked with placing one object on the rack,
followed by placing the second object next to it.

o Align Cans. XArm needs to grasp one can and put it next
to the other can.

o Grasp Banana. xArm should grasp the banana and rotate

it by 30 to 60 degrees along the z-axis.
o Tidy Table. xArm is required to pick up the kitchen spoon

and place it onto the cutting board to clean the table.

A. Zero-shot Sim2real Imitation Learning

Fig. 7 shows the performances of policies trained with only
simulation data. We leverage the MPlib motion planner [51],
utilizing predefined motions and poses. For each task, we
collect 100 trajectories per iteration and train on the sum of
all generated data. We can safely conclude that GSWorld al-
lows zero-shot sim2real policy transfer and shows promising
success rates. More details are included in section IV-B.

B. Closed-loop DAgger for Continuous Policy Improvement

The data collection uses same method as the zero-shot
sim2real learning. For sim2real, we collect 100 expert tra-
jectories for the initial iteration of DAgger training. In
subsequent iterations, we evaluate the current policy and
identify all failed trajectories. For each failure, we reset the
environment to a preceding state where the task remains solv-
able, and collect additional corrective data using the motion
planner starting from that state. This DAgger data collection
process is repeated for four additional iterations, with each
iteration generating 100 expert trajectories. As shown in
Figure 7, our DAgger-based approach leads to significant

Place Box Pour Sauce

80 70
TfS-Real

7 DAGGER-Real

70 TfS-Sim 60

DAGGER-Sim

100 200 300 400 500 100 200 300 400 500
Number of Demonstrations Number of Demonstrations

Stack Cans Arrange Cans

Success Rates
w @
S 3

N
S

w
)
w
s

100 200 300 400 500 100 200 300 400 500
Number of Demonstrations Number of Demonstrations

Fig. 7: Closed-loop Sim2real DAgger Training on FR3.
Policies are trained with sim data and deployed in both sim
and real environments. DAgger consistently improves policy
performances and outperforms training from scratch.

Align Cans
DAgger

Grasp Banana Tidy Table

Success Rates
3
Py
3
3

100 200 300 400 500
Number of Demonstrations

30l
100 200 300 400 500 o
Number of Demonstrations

L as
0 100 200 300 400 500 0
Number of Demonstrations

Fig. 8: Closed-loop Real2sim2real DAgger on xArm.
DAgger can also be used to improve real-world policies.

performance improvements across all four tasks, compared to
training from scratch (TfS) using only a supervised imitation
learning objective.

DAgger can also be applied to improve real-world policies.
Instead of starting from a randomly initialized policy, we can
do real2sim2real DAgger learning. First we train a real-world
ACT with a few demonstrations. Then we start from this
checkpoint and do DAgger in GSWorld. Fig 8 shows that
GSWorld can improve performance after real-world policy
deployment.

These results highlight the critical role of closed-loop
DAgger Training. Leveraging our photo-realistic digital twin,
researchers can collect essential corrective data that would
be extremely difficult to obtain in the real world, primarily
due to the challenges of precisely resetting objects to their
pre-failure states.

C. Benchmarking

In Fig. 9, we observe a strong correlation between simu-
lation and real-world performance across all evaluated tasks
and different policy architectures. This correlation indicates
that GSWorld can reliably predict real-world outcomes with-
out requiring physical deployment of policies in the real
world scene. As shown in Table I, higher simulated per-
formance consistently corresponds to higher success rates
in real-world experiments. By leveraging the photorealistic

ACT [62] Pi0 [3]
real sim real sim
Place Box 50.0% 44.0% 60.0% 52.0%
Pour Sauce 40.0% 28.0% 60.0% 40.0%
Stack Cans 50.0% 42.0% 40.0% 32.0%
Arrange Cans 60.0% 48.0% 60.0% 50.0%
Avg. 50.0% 41.0% 55.0% 43.5%

TABLE I: Visual Benchmarking of Real-world Policies on
FR3. We show the evaluation performance in both sim and
real of policies trained with only real-world data.

rendering capabilities of 3DGS [26], we establish a bench-
marking framework that reflects real-world behaviors.

1.0
Model
0.9 ® ACT °
m PO
0 0.8 ° -
] o .-
4 el
w07 o .
g o o .
506 ° o
0 (] g
kS ° o m
305 A
F o
€04] = 2 |
7 ° - Task
- ® Place Box
0.3 ° et ® ® Pour Sauce
el ® Stack Cans
0.2 o Arrange Cans
0.2 0.3 0.4 0.5 0.6 0.7 0.8

Real Success Rate

Fig. 9: Visual Benchmarking with FR3. We roll out various
policies in both real and sim. We intentionally use different
policies and data sizes to show positive correlations of sim-
real performance regardless of the quality of the policies.

D. Virtual Teleoperation

Simulation data can be used to scale up robot policy
learning [20, 58]. We show that through mouse and keyboard,
we can collect teleoperation data in the simulation with real
renderings, as illustrated in Fig. 10.

Fig. 10: Galaxea R1 Virtual Teleoperation. We use a
keyboard to teleop R1 and render photo-realistic videos.

E. Visual Reinforcement Learning

GSWorld is designed to support parallel environments so
that we can use this to learn visual RL policies, which
has great potential in robot learning [20, 41]. We trained
asymmetric SAC [16] with GSWorld, where the critic sees
simulation-privileged information and the actor only uses
robot joint position. As we aim to show that GSWorld can re-
duce the visual gap for RL instead of acquiring good sim2real

Grasp Banana Tidy Table

GSWorld
Maniskill

GsWorld

000 025 050 075 100 125
Training Steps (M)

150 175 000 025 050 075 100 125 150 175

Training Steps (M)

Fig. 11: SAC. Results are aggregated over 3 runs. Directly
training from ManiSkill is also plotted for comparison.

VRL policies, we train with no domain randomization except
for color jittering for efficiency. We only use the third-person
view since wrist camera shows significant gaps during RL
exploration. Our real-world success rates for Grasp Banana
and Tidy Table are 30% and 20%, while baseline ManiSkill
reaches 0% and 5%, respectively. Training results are shown
in Fig. 11.
V. CONCLUSION

In this work, we present a pipeline for constructing a
photorealistic digital twin that delivers highly correlated
performance metrics between simulation and real-world de-
ployments across different policy architectures and embod-
iments. Furthermore, we demonstrate that our environment
can efficiently collect corrective data at scale, enabling more
effective policy training.

REFERENCES

[1] Jad Abou-Chakra et al. “Physically Embodied Gaus-
sian Splatting: A Visually Learnt and Physically
Grounded 3D Representation for Robotics”. In: CoRL.
2024.

[2] William Agnew et al. “Amodal 3d reconstruction for
robotic manipulation via stability and connectivity”.
In: CoRL. 2021.

[3] Kevin Black et al. “mg: A Vision-Language-Action
Flow Model for General Robot Control”. In: arXiv
preprint arXiv:2410.24164 (2024).

[4] Berk Calli et al. “Yale-CMU-Berkeley dataset for
robotic manipulation research”. In: The International
Journal of Robotics Research 36.3 (2017), pp. 261-
268.

[5] Tianxing Chen et al. “RoboTwin 2.0: A Scalable
Data Generator and Benchmark with Strong Domain
Randomization for Robust Bimanual Robotic Manip-
ulation”. In: arXiv preprint arXiv:2506.18088 (2025).

[6] Ziyu Chen et al. “Omnire: Omni urban scene re-
construction”. In: arXiv preprint arXiv:2408.16760
(2024).

[7] Zoey Chen et al. “Urdformer: A pipeline for construct-
ing articulated simulation environments from real-
world images”. In: RSS. 2024.

[8] Xuxin Cheng et al. “Open-television: Teleoperation
with immersive active visual feedback”. In: arXiv
preprint arXiv:2407.01512 (2024).

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

Cheng Chi et al. “Universal manipulation interface:
In-the-wild robot teaching without in-the-wild robots”.
In: arXiv preprint arXiv:2402.10329 (2024).

Erwin Coumans and Yunfei Bai. Pybullet, a python
module for physics simulation for games, robotics and
machine learning. 2016.

Tianyuan Dai et al. “Automated creation of digital
cousins for robust policy learning”. In: CoRL. 2024.
Zhao Dong et al. “Digital Twin Catalog: A Large-
Scale Photorealistic 3D Object Digital Twin Dataset”.
In: arXiv preprint arXiv:2504.08541 (2025).

Tom Erez, Yuval Tassa, and Emanuel Todorov. “Sim-
ulation tools for model-based robotics: Comparison
of bullet, havok, mujoco, ode and physx”. In: ICRA.
2015.

Sergio Garrido-Jurado et al. “Automatic generation
and detection of highly reliable fiducial markers under
occlusion”. In: Pattern Recognition (2014).

Haoran Geng et al. “RoboVerse: Towards a uni-
fied platform, dataset and benchmark for scalable
and generalizable robot learning”. In: arXiv preprint
arXiv:2504.18904 (2025).

Tuomas Haarnoja et al. “Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with
a stochastic actor”. In: International conference on
machine learning. Pmlr. 2018, pp. 1861-1870.
Xiaoshen Han et al. “Re3Sim: Generating High-
Fidelity Simulation Data via 3D-Photorealistic Real-
to-Sim for Robotic Manipulation”. In: arXiv preprint
arXiv:2502.08645 (2025).

Yuanming Hu et al. “Taichi: a language for high-
performance computation on spatially sparse data
structures”. In: ACM Transactions on Graphics (TOG)
(2019).

Binbin Huang et al. “2d gaussian splatting for geomet-
rically accurate radiance fields”. In: ACM SIGGRAPH.
2024.

Tao Huang et al. “Diffusion reward: Learning rewards
via conditional video diffusion”. In: European Con-
ference on Computer Vision. Springer. 2024, pp. 478—
495.

Clément Jambon et al. “NeRFshop: Interactive Editing
of Neural Radiance Fields”. In: Proceedings of the
ACM on Computer Graphics and Interactive Tech-
niques (2023).

Stephen James et al. “Rlbench: The robot learn-
ing benchmark & learning environment”. In: [EEE
Robotics and Automation Letters (2020).

Mazeyu Ji et al. “Graspsplats: Efficient manipulation
with 3d feature splatting”. In: CoRL. 2024.

Guangqi Jiang et al. “Robots Pre-Train Robots:
Manipulation-Centric Robotic Representation from
Large-Scale Robot Datasets”. In: arXiv preprint
arXiv:2410.22325 (2024).

Hanxiao Jiang et al. “Phystwin: Physics-informed
reconstruction and simulation of deformable objects

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

from videos”. In: arXiv preprint arXiv:2503.17973
(2025).

Bernhard Kerbl et al. “3d gaussian splatting for real-
time radiance field rendering.” In: ACM Trans. Graph.
42.4 (2023), pp. 139-1.

Xinhai Li et al. “RoboGSim: A Real2Sim2Real
Robotic Gaussian Splatting Simulator”. In: arXiv
preprint arXiv:2411.11839 (2024).

Xuanlin Li et al. “Evaluating Real-World Robot Ma-
nipulation Policies in Simulation”. In: arXiv preprint
arXiv:2405.05941 (2024).

Huihan Liu et al. “Robot learning on the job: Human-
in-the-loop autonomy and learning during deploy-
ment”. In: The International Journal of Robotics Re-
search (2022).

Ruoshi Liu et al. “Zero-1-to-3: Zero-shot one image
to 3d object”. In: ICCV. 2023.

Ruoshi Liu et al. “Differentiable robot rendering”. In:
arXiv preprint arXiv:2410.13851 (2024).

Shilong Liu et al. “Grounding dino: Marrying dino
with grounded pre-training for open-set object detec-
tion”. In: ECCV. 2024.

Songming Liu et al. “RDT-1B: a Diffusion Foundation
Model for Bimanual Manipulation”. In: arXiv preprint
arXiv:2410.07864 (2024).

Haozhe Lou et al. Robo-GS: A Physics Consistent
Spatial-Temporal Model for Robotic Arm with Hybrid
Representation. 2024.

Guanxing Lu et al. “Manigaussian: Dynamic gaus-
sian splatting for multi-task robotic manipulation”. In:
ECCV. 2024.

Zhao Mandi et al. “Real2code: Reconstruct articu-
lated objects via code generation”. In: arXiv preprint
arXiv:2406.08474 (2024).

Ben Mildenhall et al. “Nerf: Representing scenes as
neural radiance fields for view synthesis”. In: Com-
munications of the ACM 65.1 (2021), pp. 99-106.
Yao Mu et al. “RoboTwin: Dual-Arm Robot Bench-
mark with Generative Digital Twins”. In: Proc.
IEEE/CVF Conf. on Computer Vision and Pattern
Recognition (CVPR). 2025, pp. 27649-27660.
Soroush Nasiriany et al. “Robocasa: Large-scale sim-
ulation of everyday tasks for generalist robots”. In:
arXiv preprint arXiv:2406.02523 (2024).

Octo Model Team et al. “Octo: An Open-Source
Generalist Robot Policy”. In: Proceedings of Robotics:
Science and Systems. 2024.

Guoping Pan et al. “RoboDuet: Learning a Co-
operative Policy for Whole-body Legged Loco-
Manipulation”. In: IEEE Robotics and Automation
Letters (2025).

Nicholas Pfaff et al. “Scalable real2sim: Physics-aware
asset generation via robotic pick-and-place setups”. In:
arXiv preprint arXiv:2503.00370 (2025).

Ri-Zhao Qiu et al. “Language-driven physics-based
scene synthesis and editing via feature splatting”. In:
ECCV. 2024.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

Delin Qu et al. “Livescene: Language embedding
interactive radiance fields for physical scene rendering
and control”. In: arXiv preprint arXiv:2406.16038
(2024).

M Nomaan Qureshi et al. “Splatsim: Zero-shot
sim2real transfer of rgb manipulation policies using
gaussian splatting”. In: 2025 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE.
2025, pp. 6502-6509.

Alec Radford et al. “Learning transferable visual
models from natural language supervision”. In: ICML.
2021.

Eric Rohmer, Surya PN Singh, and Marc Freese.
“V-REP: A versatile and scalable robot simulation
framework™. In: IROS. 2013.

Stéphane Ross, Geoffrey Gordon, and Drew Bagnell.
“A reduction of imitation learning and structured pre-
diction to no-regret online learning”. In: Proceedings
of the fourteenth international conference on artificial
intelligence and statistics. JIMLR Workshop and Con-
ference Proceedings. 2011.

Johannes L Schonberger and Jan-Michael Frahm.
“Structure-from-motion revisited”. In: Proceedings of
the IEEE conference on computer vision and pattern
recognition. 2016, pp. 4104—4113.

Deborah Sulsky, Zhen Chen, and Howard L Schreyer.
“A particle method for history-dependent materials”.
In: Computer methods in applied mechanics and en-
gineering (1994).

Stone Tao et al. “ManiSkill3: GPU Parallelized
Robotics Simulation and Rendering for Generalizable
Embodied AI”. In: arXiv preprint arXiv:2410.00425
(2024).

Marcel Torne et al. “Reconciling Reality through Sim-
ulation: A Real-to-Sim-to-Real Approach for Robust
Manipulation”. In: arXiv preprint arXiv:2403.03949
(2024).

Yijia Weng et al. “Neural Implicit Representation
for Building Digital Twins of Unknown Articulated
Objects”. In: CVPR. 2024.

Turner Whitted. “An improved illumination model
for shaded display”. In: Proceedings of the 6th an-
nual conference on Computer graphics and interactive
techniques. 1979, p. 14.

Tianhao Wu et al. “Amodal3R: Amodal 3D Re-
construction from Occluded 2D Images”. In: arXiv
preprint arXiv:2503.13439 (2025).

Fanbo Xiang et al. “Sapien: A simulated part-
based interactive environment”. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition. 2020, pp. 11097-11107.

Rui Yan et al. “ACE-F: A Cross Embodiment Foldable
System with Force Feedback for Dexterous Teleoper-
ation”. In: Ist Workshop on Robot Hardware-Aware
Intelligence. 2025.

[58]

[59]

[60]

[61]

[62]

Ruihan Yang et al. EgoVLA: Learning Vision-
Language-Action Models from Egocentric Human
Videos. 2025.

Sizhe Yang et al. “Novel Demonstration Generation
with Gaussian Splatting Enables Robust One-Shot
Manipulation”. In: arXiv preprint arXiv:2504.13175
(2025).

Kevin Zakka et al. “MuJoCo Playground”. In: arXiv
preprint arXiv:2502.08844 (2025).

Xiaoyu Zhang et al. “Diffusion meets dagger: Su-
percharging eye-in-hand imitation learning”. In: RSS.
2024.

Tony Z Zhao et al. “Learning fine-grained biman-
ual manipulation with low-cost hardware”. In: arXiv
preprint arXiv:2304.13705 (2023).

APPENDIX
A. Neural Rendering Background

Point and surface splatting methods represent a scene
explicitly via a mixture of 2D or 3D Gaussian ellipsoid. In
the case of Gaussian Splatting, the geometry is represented
as a collection of 3D Gaussian, each being the tuple {X, X}
where X € R3? is the centroid of the Gaussian and ¥ is
its covariance matrix in the world frame. This gives the
probability density function

G(X,%) = exp—%XTzflx. (6)

Gaussian splatting decomposes it into a scaling matrix S and
a rotation matrix R via ¥ = RSSTR.T. The color informa-
tion in the texture is encoded with a spherical harmonics
map ¢; = SHy(d;), which is conditioned on the viewing
direction ¢.

To optimize for features, existing methods tend to append
an additional vector f; € R¢ to each Gaussian, which is
rendered in a view-independent manner because the seman-
tics of an object shall remain the same regardless of view
directions. The rasterization procedure starts with culling
the mixture by removing points that lay outside the camera
frustum. The remaining Gaussians are projected to the image
plane according to the projection matrix W of the camera,
which is then sorted from low to high using the distance
from the virtual camera origin. This projection also induces
the following transformation on the covariance matrix >:

Y =JWESW'JT, (7)
where J is the Jacobian of the projection matrix W. We can

then render both the color and the visual features with the
splatting algorithm:

i—1
{F.C} =) {fici} o [[(1—0y), (8)
iEN j=1

where «; is the opacity of the Gaussian conditioned on ¥
and the indices ¢ € N are in the ascending order determined
by their distance to the camera origin.

Following the convention [43], GSWorld assumes that per-
gaussian feature vector f; is isotropic. The rendered depth,
images, and features are then supervised using L2 loss.

B. More Experimental Details

a) Simulation Evaluation: We evaluated each task
across 25 random seeds in simulation. At the initiation of
each episode, objects were randomly configured. A partial
success criterion was established, awarding half credit for
completing intermediate steps (e.g., successfully picking up
an object or placing one can on the rack). Episodes for
the placing box, pouring sauce, and stacking cans tasks
were limited to 500 time steps, while arranging cans was
allocated 800 time steps due to its extended task horizon.
The control framework employed joint position control. The
policy architecture accepted dual visual image inputs and the
robot’s proprioceptive data, subsequently generating target
joint positions as action outputs.

b) Real-world Evaluation: Real-world validation con-
sisted of 10 experimental trials per policy, each with ran-
domized initial conditions. Consistent with the simulation
protocol, partial success metrics were implemented. The
observational framework maintained parity with the simula-
tion environment, utilizing visual inputs from two RealSense
D435i cameras.

c) Policy Learning Implementation: In our paper we
use two policy architectures, i.e., ACT [62] and PIO [3]. For
ACT, we adopted the original PyTorch implementation but
replaced the visual backbone from ResNet-18 to DinoV2
ViT-S, similar to OpenTV [8]. We used 42 batch size, an
SGD optimizer with a constant 0.0001 learning rate for
50000 iterations to train the policy. The rest of the training
hyperparameters are consistent with the original ACT paper.
For the PIO [3] model, we adopted the implementation on
LeRobot. We used the publicly available PI0-base model
weights for initialization. For the training, we freeze the
visual and language backbone and train only the action
expert. The optimization was done with an SGD optimizer
with a constant 0.0001 learning rate for 50 000 iterations with
a batch size of 10.

d) DAGGER Detailed Performance: In this section we
provide the numerical results in Figure 7, which is shown in
Table II.

C. Gaussian Splatting Training

a) Implementation: Our pipeline is compatible with
any kind of gaussian splitting implementation. For simplicity,
we use the official one [26] and their default code im-
plementation without modifying anything. We take around
100 and 300 pictures for object and robot reconstruction,
respectively. The model is trained with points initialized with
Colmap [49], and saved at iteration 7000 and 30000.

D. GSWorld Data Collection

a) Simulation: We primarily rely on motion planning
for data collection due to its fully automated nature. The task
is decomposed into several subtasks, each associated with
a specific motion. The robot executes these motions using
MPIib.

Our framework also supports data collection via teleop-
eration in simulation. We employ a built-in click-and-drag
teleoperation system provided by ManiSkill [51], which is
operated using a keyboard and mouse. This system allows
users to define keyframes and utilize a motion planner to
achieve the desired robot pose.

b) Real World: For real-world data collection, we
utilize a VR-based teleoperation system. The interface in-
cludes an HTC Vive controller and base station, which
track 6-DOF hand movements that are mapped to the robot
arm’s end-effector pose. Integration with the HTC Vive is
achieved using the triad-openvr package in conjunction with
SteamVR. A position-velocity controller is implemented to
ensure accurate tracking of the controller’s transmitted poses.
This setup enables efficient collection of demonstration tra-
jectories, including both state and observation data. For the
xArm6 platform, we use ACE-F [57].

https://github.com/haosulab/MPlib
https://github.com/TriadSemi/triad_openvr

Place Box Pour Sauce

Iter 1 Tter 2 Tter 3 Iter 4 Iter 5 Tter 1 Iter 2 Iter 3 Iter 4 Iter 5

train from scratch 40% 44% 48% 60% 68% 28% 28% 36% 44% 52%

S dagger 40% 52% 64% 68% T6% 28% 36% 48% 52% 64%

real train from scratch 40% 40% 50% 50% 65% 20% 20% 25% 30% 40%

dagger 40% 50% 55% 65% 710% 20% 25% 35% 40% 50%
Stack Cans Arrange Cans

Iter 1 Iter 2 Iter 3 Iter 4 Iter 5 Iter 1 Iter 2 Iter 3 Iter 4 Iter 5

train from scratch 40% 44% 48% 48% 60% 32% 36% 44% 52% 60%

SN Jagger 40% 56% 60% 80% 88% 32% 40% 46% 60% T2%
real train from scratch 30% 40% 45% 50% 60% 30% 30% 40% 45% 55%
dagger 30% 45% 50% 60% 70% 30% 35% 50% 60% 65%
Avg.
Iter 1 Iter 2 Iter 3 Iter 4 Iter 5
sim train from scratch 35% 38% 44% 51% 60%
dagger 35% 46% 54.5% 65% 75%
real train from scratch 30% 32.5% 40% 43.75% 55%
dagger 30% 38.75% 47.5% 56.25% 63.75%

TABLE II: Performance comparison between ACT and Pi0 methods with different training approaches (train from scratch
vs. dagger) across various manipulation tasks and iterations (success rates in %).

E. GSWorld Usage example

Our pipeline is highly compatible with the gym interface.
GSWorld can be enabled by as few as one line of code, which
add a wrapper layer on any existing environment. Below we
show a code example to use GSWorld.

env = gym.make (

env_id,

robot_uids=args.robot_uid,

obs_mode=args.obs_mode,

control_mode=args.control_mode,

render_mode=args.render_mode,

reward_mode="dense",

human_render_camera_configs=dict (
<~ shader_pack=args.shader),

viewer_camera_configs=dict (shader_pack=
< args.shader),

max_episode_steps=args.ep_len,

env = GSWorldWrapper (
env=env,
gs_cfg=args.gs_cfgqg,
device="cuda",

Then treat the env as the gym env

¥ Pixel observations are rendered with 3
— DGS.

obs, _ = env.reset ()

obs, reward, terminated, truncated, info =
— env.step(action)

	Introduction
	Related Work
	Method
	Problem Formulation
	Recipe for Real2Sim Reconstruction
	Applications - Closing the Loop for Developing Visual Manipulation Policies

	Experiments
	Zero-shot Sim2real Imitation Learning
	Closed-loop DAgger for Continuous Policy Improvement
	Benchmarking
	Virtual Teleoperation
	Visual Reinforcement Learning

	Conclusion
	Appendix
	Neural Rendering Background
	More Experimental Details
	Gaussian Splatting Training
	GSWorld Data Collection
	GSWorld Usage example

